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1. Introduction

In this lecture, we introduce the layer potentials methods to solve Dirichlet and
Neumann boundary problems of Laplace equation.

The note organizes as follow. In section2,we introduce our problems and some
notations. Section3 deals with the general kernel properties on the boundry. Section4
and 5 study the double and single layer potentials respectively. Then we solve our
problems in section2 at the functional analysis frame in section6. Finally, we select
some common facts about removable singularity and asymptotic behavior at infinity
of harmonic function and its radical derivative in appendix.

2. Setup

Let Ω always be a bounded open subset in Rn with C2 boundary S,and we set
Ω′ = Rn \ Ω. Ω and Ω′ will both be allowed to be disconnected, however S can be
differetiable there can only be finitely many component. We denote the components
of Ω by Ω1, · · · ,Ωm and those of Ω′ by Ω′0,Ω

′
1, · · · ,Ω′m′ , where Ω′0 is the unbounded

component.

By tubular neiborhood lemma, we have following C1 natural diffeomorphism

(2.1) F (x, t) = x+ tγ(x)

from S×(−ε, ε) to a neiborhood V of S for some ε > 0 and every point in {x+ tγ(x) :
t ∈ (−ε, ε)} is the unique nearest point to x. Here, γ(x) is outward-pointing unit
normal vector field along S.

The we can extend the normal derivative to the whole tubular neiborhood V . we
set

(2.2) ∂γu(x+ tγ(x) = γ(x) · ∇u(x+ tγ(x))

for u ∈ C1(V ).
We define Cγ(Ω) to be the functions u ∈ C1(Ω) ∩ C(Ω̄) such that the limit

(2.3) ∂γ−u(x) = lim
t<0,t→0

γ(x) · ∇u(x+ tγ(x))

exists for each x ∈ S,the convergence being uniform on S.

Similarly, we define Cγ(Ω
′) to be the functions u ∈ C1(Ω′) ∩ C(Ω̄′) such that the

limit

(2.4) ∂γ+u(x) = lim
t>0,t→0

γ(x) · ∇u(x+ tγ(x))

exists for each x ∈ S,the convergence being uniform on S. The operators ∂γ− and
∂γ+ are called the interior and exterior normal derivatives on S.
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If Ω ⊂ Rn \ {0}, we set

Ω̃ = {|x|−2x : x ∈ Ω}
and if u is a function on Ω, we define its Kelvin transform ũ, a function on Ω̃ by

ũ = |x|2−nu(|x|−2x)

Suppose u is harmonic outside some bounded set, we say u is harmonic at infinity if
ũ has a removable singularity at 0.

We can now state our problems we propose to solve:

The Interior Dirichlet Problem: Given f ∈ C(S),find u ∈ C(Ω̄) such that u is
harmonic on Ω and u = f on S.

The Exterior Dirichlet Problem: Given f ∈ C(S),find u ∈ C(Ω̄′) such that u
is harmonic on Ω ∪ {∞} and u = f on S.
The Interior Neumann Problem: Given f ∈ C(S),find u ∈ Cγ(Ω) such that u

is harmonic on Ω and ∂γ−u = f on S.
The Exterior Neumann Problem: Given f ∈ C(S),find u ∈ Cγ(Ω′) such that

u is harmonic on Ω ∪ {∞} and ∂γ+u = f on S.
To begin with, we prove the uniqueness for four problems.

Theorem 2.1. (I) If u solves the interior Dirichlet problem with f = 0,then u = 0.
(II) If u solves the exterior Dirichlet problem with f = 0, then u = 0.
(III) If u solves the interior Neumann problem with f = 0, then u is constant on each
component of Ω.
(IV) If u solves the exterior Neumann problem with f = 0, then u is constant on each
component of Ω, and u = 0 unbounded component Ω′0 when n > 2.

Proof. (I)(II) is trivial by maximum principle.(III) just by Green’s formula. We just
need to prove (IV). Let r > 0 such that Ω̄ ⊂ Br, by Green’s formula∫

Br\Ω
|∇u|2 = −

∫
Br\Ω

u∆u−
∫
S

u∂γ+u+

∫
∂Br

u∂ru

Since |u(x)| = O(|x|2−n) and |∂ru(x)| = O(|x|1−n) for n > 2, |u(x)| = o(log(|x|)) and
|∂ru(x)| = O(|x|−2) for n = 2. Then let r →∞, yields our desired. �

We shall see the Dirichlet problem are always solvable. For the Neumann problems,
however, there are some necessary conditions as follows.

Theorem 2.2. (I)If the interior Neumann problem has a solution, then
∫
∂Ωj

f = 0

for j = 1, · · · ,m.
(II)If the exterior Neumann problem has a solution, then

∫
∂Ω′

j
f = 0 for j = 1, · · · ,m′,

and also for j = 0 in case n = 2.

Proof. For n = 2,Let r > 0 such that Ω ⊂ Br, by Green’s formula∫
∂Br

∂ru−
∫
∂Ω′

0

∂γ+u = 0



4 LU ZHIHAO

As before, let r →∞, yields our desired. The remainder is trivial by Green’s formula.
�

3. Kenel Properties on Boundary

Let K be a measurable function on S × S and suppose 0 < α < n− 1. We call K
a kenel of order α if

(3.1) K(x, y) = A(x, y)|x− y|−α

where A(x, y) is a bounded function on S × S. We call K a kenel of order zero if

(3.2) K(x, y) = A(x, y) log |x− y|+B(x, y)

where A and B is a bounded function on S × S.

We call K a continuous kenel of order α (0 ≤ α < n− 1) if K is a kenel of order α
and K is continuous on {(x, y) ∈ S : x 6= y}.

If K is a kenel of order α (0 ≤ α < n− 1), we define the operator TK formally by

(3.3) TKf(x) =

∫
S

K(x, y)f(y)dσ(y)

We select some useful properties as following lemma.

Lemma 3.1. If K is a kenel of order α (0 ≤ α < n− 1)
(I)TK is bounded on Lp(S) for 1 ≤ p ≤ ∞.
(II)If K is supported in {(x, y) : |x− y| < ε}, there is a constant C = C(n, α, S) such
that

‖ TKf ‖p ≤ Cεn−1−α ‖ A ‖∞‖ f ‖p (α > 0)

‖ TKf ‖p ≤ Cεn−1(‖ A ‖∞ (1 + | log ε|)+ ‖ B ‖∞) ‖ f ‖p (α = 0)

(III)If K ∈ C(S × S),TK is a compact map from Lp(S) into C(S).
(IV)TK is compact on L2(S). Moreover, if K is continuous kernel, TK is compact on
Lp(S) for 1 ≤ p ≤ ∞.
(V)If K a continuous kenel of order α (0 ≤ α < n− 1), then TK transforms bounded
function into continuous function.
(VI)If K a continuous kenel of order α (0 ≤ α < n− 1), then TK transforms Lp into
continuous function for p > (n− 1)/(n− 1− α).
(VII)If K a continuous kenel of order α (0 ≤ α < n−1), if u ∈ L2(S) and u+TKu ∈
C(S), then u ∈ C(S).

Proof. (II) implies (I) by choose ε > diam(S).
(II):WLOG, ε ≤ j(S) ≤ 1, here j(S) is the injective radius of S. Using polar coordi-
nates on S centered at x, we see (α > 0):∫

S

|K(x, y)|dσ(y) ≤ ‖ A ‖∞
∫
|x−y|<ε

|x− y|αdy
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≤ C(n, S) ‖ A ‖∞
∫ ε

0

rn−2−αdr

= C(n, S, α) ‖ A ‖∞ εn−1−α

Similarly, ∫
S

|K(x, y)|dσ(x) ≤ C(n, S, α) ‖ A ‖∞ εn−1−α

in the case α = 0:∫
S

|K(x, y)|dσ(y) ≤ ‖ A ‖∞
∫
|x−y|<ε

| log(|x− y|)|dy+ ‖ B ‖∞ εn−1

≤ C(n, S) ‖ A ‖∞
∫ ε

0

−rn−2 log rdr+ ‖ B ‖∞ εn−1

= C(n, S)(‖ A ‖∞ | log ε|+ 1+ ‖ B ‖∞)εn−1

the remainder is obvious by Young’s inequality.
(III):By computation

|
∫
S

K(x, z)f(z)dz| ≤ C(K,S) ‖ f ‖p

|
∫
S

(K(x, z)−K(y, z))f(z)dz| ≤ C(S)|K(x, z)−K(y, z)| ‖ f ‖p

then Ascoli-Arzela theorem yields our desired.
(IV):Given ε > 0, set Kε(x, y) = K(x, y) if |x− y| < ε and Kε = 0 otherwise, and set
K ′ε(x, y) = K(x, y) − K ′ε(x, y). It’s easy to see TK′

ε
is compact operator on L2(S)(if

K is continuous kernel, TK′
ε

is compact on Lp(S) for 1 ≤ p ≤ ∞). Then conclusion
holds by closeness of compact operator.
(V):Given x ∈ S and δ > 0. Define Bδ(x) = {y ∈ S : |x− y| < δ}, we have
α > 0:

|TKf(x)− TKf(y)| = |
∫
S

(K(x, z)−K(y, z))f(z)dz|

≤
∫
Bδ(x)

|(K(x, z)−K(y, z))f(z)dz|+
∫
S\Bδ(x)

|(K(x, z)−K(y, z))f(z)|

≤ ‖ A ‖∞‖ f ‖∞
(∫

B2δ(x)

|x− z|α +

∫
B2δ(y)

|y − z|α
)

+R(x, y, δ)

= C(n, α)δn−1−α ‖ A ‖∞‖ f ‖∞ +R(x, y, δ)

α = 0:

|TKf(x)− TKf(y)| = |
∫
S

(K(x, z)−K(y, z))f(z)dz|

≤
∫
Bδ(x)

|(K(x, z)−K(y, z))f(z)dz|+
∫
S\Bδ(x)

|(K(x, z)−K(y, z))f(z)|
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≤ ‖ A ‖∞‖ f ‖∞
(∫

B2δ(x)

|x− z|α +

∫
B2δ(y)

|y − z|α
)

+R(x, y, δ)

= C(n, α) ‖ f ‖∞ δn−1(‖ A ‖∞ | log δ|+ 1+ ‖ B ‖∞) +R(x, y, δ)

then the conclusion holds by ε− δ argument.
(VI)As same as (V).
(VII)Given ε > 0, choose φ ∈ C(S × S) such that 0 ≤ φ ≤ 1, φ(x, y) = 1 for
|x− y| < 1

2
ε and φ(x, y) = 0 for |x− y| < ε. Set K0 = Kφ and K1 = K −K0, then

|TK1u(x)− TK1u(y)| ≤‖ u ‖2

[∫
S

(K1(x, z)−K1(y, z))f(z)dz

] 1
2

then f := u+TK0u is continuous. If we choose ε sufficiently small, then u is continuous
by (II). �

4. Double Layer Potentials

In this section, we introduce the double layer potential and study its kernel behavior
partially by some facts in section3.

Let φ ∈ C(S), the double layer potential with moment φ given by

(4.1) u(x) =

∫
S

∂γyΓ(x, y)φ(y)dσ(y)

for x ∈ Rn \ S, here Γ(x) is the fundamental solution.
We note that

∂γyΓ(x, y) = −(x− y) · γ(y)

ωn|x− y|n
We point out that u is not in Rn and there is a jump at boundry. Before proving the
important fact, we need some basic lemma.

Lemma 4.1. (I)There is a constant c > 0, such that for all x, y ∈ S
|(x− y) · γ(y)| ≤ c|x− y|2

(II)K is a continuous kernel of order n− 2 on S.
(III)The following integal formula hold∫

S

∂γyΓ(x, y)dσ(y) =

{
1 if x ∈ Ω,

0 if x ∈ Ω′.∫
S

K(x, y)dσ(y) =
1

2
if x ∈ S

(IV)There is a constant C > 0 such that for all x ∈ Rn \ S∫
S

|∂γyΓ(x, y)|dσ(y) ≤ C

(V)Suppose φ ∈ C(S) and φ(x0) = 0 for some x0 ∈ S, then u continuous at x0.
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Proof. (I):WLOG y = (0, · · · , 0) and γy = (0, · · · , 1), xn = f(x1, · · · , xn−1), then by
Taylor’s theorem

|(x− y) · γy| ≤ c|(x1, · · · , xn−1)|2 ≤ c|x− y|2

S is compact and of class C2, so a uniform c exists.
(II):By definition of double layer potential and (I).
(III):The first integal formula is trivial by property of fundamental solution. Now we
prove the second, suppose x ∈ S, we set

Sε = S \ (S ∩Bε), ∂B′ε = ∂Bε ∩ Ω, ∂B′′ε = {y ∈ ∂Bε : γx · y < 0}
Green’s formula gives

0 =

∫
Sε

K(x, y)dσ(y) +

∫
∂B′

ε

∂γyΓ(x, y)dσ(y)

here we have chosen proper oritation on ∂B′ε. Then∫
S

K(x, y)dσ(y) = − lim
ε→0

∫
∂B′

ε

∂γyΓ(x, y)dσ(y) = lim
ε→0

εn−1

ωn

∫
∂B′

ε

dσ(y)

Again since S is C2, the symmetry difference between ∂B′ε and ∂B′′ε is contained in

{y ∈ ∂Bε : |y · γx| ≤ c(ε)}, c(ε) = O(ε2)

whose area is O(εn) and the result follows.
(IV):Let dist(x, S) be the distance from x to the nearest point in S. Fix δ with the
following property:

a.δ < 1
2c

, here c is in (I).

b.δ < 1
2
ε, here ε is in section2 about tubular neiborhood.

Case1:dist(x, S) ≥ 1
2
δ. Then |∂γyΓ(x, y)| ≤ C(n)δ1−n, hence∫

S

|∂γyΓ(x, y)|dσ(y) ≤ C(n, S)

Case2:dist(x, S) ≤ 1
2
δ. Let x0 be the nearest point to x in S.If y ∈ S \Bδ(x0):

|x− y| ≥ |y − x0| − |x− x0| ≥
1

2
δ

then the integal in S \Bδ(x0) is bounded by C(n, S) as above.If y ∈ Bδ(x0), we note
that:

ωn|∂γΓ(x, y)| =
|(x− y) · γy|
|x− y|n

≤ |(x− x0)|+ c|y − x0|2

|x− y|n

and

|x− y|2 = |x− x0|2 + |y − x0|2 + 2(x− x0)(y − x0)

≥ |x− x0|2 + |y − x0|2 − 2c|(x− x0)||(y − x0)|
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≥ 1

2
(|x− x0|2 + |y − x0|2)

hence

|∂γΓ(x, y)| ≤ C(n)

[
|x− x0|

(|x− x0|2 + |y − x0|2)n/2
+

c

|y − x0|n−2

]
therefore, we set a = |x− x0| and integrate in polar coordinate:∫

Bδ(x0)

|∂γyΓ(x, y)|dσ(y) ≤ C(n, S)

∫ δ

0

[
a

(a2 + r2)n/2
+

1

rn−2

]
rn−2dr

= C(n, S)

[∫ ∞
0

rn−2

(1 + r2)n/2
dr + δ

]
= C(n, S)

Combining this with integal in Bδ(x0), so we have done.
(V):Given ε > 0, by

|u(x)− u(x0)| ≤
∫
Bδ(x0)

(|∂γyΓ(x, y)|+ |∂γyΓ(x0, y)|)|φ(y)|dσ(y)

+

∫
S\Bδ(x0)

(|∂γyΓ(x, y)| − |∂γyΓ(x0, y)|)|φ(y)|dσ(y)

we choose δ sufficiently small to make the first item less than 1
2
ε, then choose η > 0

and |x− x0| < η, so the sum less than ε.
�

Suppose φ ∈ C(S) and u is defined by (4.1). we define the function ut on S for
small t 6= 0 by

ut(x) = u(x+ tγ(x))

Then we have following jump formula.

Theorem 4.2. Suppose φ ∈ C(S) and u is defined by (4.1). The restriction of u
to Ω has a continuous extension to Ω̄ and the restriction u of Ω′ has a extension to
Ω̄′.More presicely, the function ut converge uniformly on S to continuous u− and u+

as t approach zero from below and above,respectively. u− and u+ are given by

u− =
1

2
φ(x) +

∫
S

K(x, y)φ(y)dσ(y)(4.2)

u+ = −1

2
φ(x) +

∫
S

K(x, y)φ(y)dσ(y)(4.3)

i.e

(4.4) u− =
1

2
φ+ TKφ; u+ = −1

2
φ+ TKφ

Moreover, φ = u− − u+.
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Proof. If x ∈ S and t < 0 is sufficiently small, then x+ tγx ∈ Ω , so

ut(x) = φ(x)

∫
S

(∂γyΓ(x+ tγx, y)dσ(y)

+

∫
S

(∂γyΓ(x+ tγx, y)(φ(y)− φ(x))dσ(y)

= φ(x) +

∫
S

(∂γyΓ(x+ tγx, y)(φ(y)− φ(x))dσ(y)

the second integal is continuous in t as t→ 0. Hence

lim
t<0,t→0

ut(x) = φ(x) +

∫
S

K(x, y)φ(y)dσ(y)− φ(x)

∫
S

K(x, y)dσ(y)

=
1

2
φ(x) +

∫
S

K(x, y)φ(y)dσ(y)

If t > 0, the argument is same except that

φ(x)

∫
S

(∂γyΓ(x+ tγx, y)dσ(y) = 0

The convergence is uniform by the proof of (V) in lemma4.1.
�

5. Single Layer Potentials

We now consider the single layer potential with moment φ

(5.1) u(x) =

∫
S

Γ(x, y)φ(x)dσ(y)

here φ ∈ C(S). It’s easy to see that the restriction of Γ(x, y) to S × S is a cntinuous
kernel of order n − 2, so u is also well defined on S. Now we consider the normal
derivative of u, for x ∈ V \ S we have

(5.2) ∂γu(x) =

∫
S

∂γxΓ(x, y)φ(y)dσ(y)

We set

(5.3) K∗(x, y) = K(y, x)

and

(5.4) T ∗Kf(x) =

∫
S

K∗(x, y)f(y)dσ(y)

then T ∗K is the adjoint of TK as an operator on L2(S).

First, we prove some simple facts which used in Theoerm 5.2 and section6.
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Lemma 5.1. If φ ∈ C(S) and u defined by (5.1), then
(a1)u ∈ C(Rn).
(a2)If 1

2
φ+ T ∗Kφ = f , then

∫
S
φ=
∫
S
f .

Moreover n = 2, we have
(b1)u is harmonic at infinity iff

∫
S
φ = 0, in which case u vanishes at infinity.

(b2)If
∫
S
φ = 0, and u is constant on Ω, then φ = 0.

Proof. a1:We need to show continuity on S, x0 ∈ S then

|u(x)− u(x0)| ≤
∫
Bδ(x0)

(|Γ(x, y)|+ |Γ(x0, y)|)|φ(y)|dσ(y)

+

∫
S\Bδ(x0)

|Γ(x, y)− Γ(x0, y)||φ(y)|dσ(y)

the remaining argument is same as proof of lemma4.1.
a2:By ∫

S

f(x)dσ(x) =
1

2

∫
S

φ(x) +

∫
S

∫
S

K(y, x)φ(y)dσ(y)dσ(x)

=

∫
S

φ(x)

the last equality due to Fubini’s theorem and (III) of lemma4.1.
b1:We have

u(x) =
1

2π

∫
S

(log |x− y| − log |x|)φ(y)dσ(y) +
1

2π
log |x|

∫
S

φ(y)dσ(y)

the first item tends to 0 uniformly for y ∈ S as x→∞, then conclusion is obvious.
b2:If u = c on Ω̄, u solves the exterior Dirichlet problem with f = c by b1. Thus
u = c everywhere, so φ = 0 by the following theoerm.

�

As might be expected, there is a jump discontinuity between the quantities defined
by (5.2) on V \ S and by (5.4) on S. Indeed, we have following theoerm.

Theorem 5.2. Suppose φ ∈ C(S) and u defined on Rn. The restriction of u to
Ω̄(resp.Ω̄′) is in Cγ(Ω)(resp.Cγ(Ω

′)), and for x ∈ S we have

∂γ−u(x) = −1

2
φ(x) +

∫
S

K(y, x)φ(y)dσ(y)(5.5)

∂γ+u(x) =
1

2
φ(x) +

∫
S

K(y, x)φ(y)dσ(y)(5.6)

i.e

(5.7) ∂γ−u = −1

2
φ+ T ∗Kφ; ∂γ+u =

1

2
φ+ T ∗Kφ

Moreover, φ = ∂γ+u(x)− ∂γ−u(x).
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Proof. Let v is the double layer potential with moment φ, consider the following f on
the tubular neiborhood V of S by

f(x) =

{
v(x) + ∂γu(x) if x ∈ V \ S,
TKφ(x) + T ∗Kφ(x) if x ∈ S.

Claim:f is continuous on V .
proof of claim: it suffices to show that if x0 ∈ S and x = x0+tγx0 , then f(x)−f(x0)→
0 as t→ 0, the convergence being uniform in x0. By

|f(x)− f(x0)| = |
∫
S

(∂γxΓ(x, y) + ∂γxΓ(x, y)− ∂γxΓ(x0, y)− ∂γyΓ(x0, y))φ(y)dσ(y)|

≤ ‖ φ ‖∞
∫
Bδ(x0)

|∂γxΓ(x, y) + ∂γyΓ(x, y)|dσ(y)

+ ‖ φ ‖∞
∫
Bδ(x0)

|∂γxΓ(x0, y) + ∂γyΓ(x0, y)|dσ(y)

+ ‖ φ ‖∞
∫
S

|∂γxΓ(x, y) + ∂γxΓ(x, y)− ∂γxΓ(x0, y)− ∂γyΓ(x0, y))|dσ(y)

However,

∂γxΓ(x, y) + ∂γyΓ(x, y) =
(x− y) · (γx0 − γy)

ωn|x− y|n
≤ C|x0 − y|2−n

Again by S is class of C2. Then the first and second integal is dominated by Cδ, the
remainder is ε− δ argument.
Hence we have

TKφ(x) + T ∗Kφ(x) = v−(x) + ∂γ−u(x) =
1

2
φ(x) + TKφ(x) + ∂γ−u(x)

i.e

∂γ−u = −1

2
φ+ T ∗Kφ

also we have

TKφ(x) + T ∗Kφ(x) = v+(x) + ∂γ+u(x) = −1

2
φ(x) + TKφ(x) + ∂γ+u(x)

i.e

∂γ+u =
1

2
φ+ T ∗Kφ

The convergence is uniform of ∂γu(x + tγ) to ∂γ±u(x) in x since the same is true of
v and v + ∂γu(x).

�
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6. Solutions of the Problems

For simplicity, we consider the operator TK and T ∗K on L2(S) and define following
subspaces

U+ = ker(−1

2
I + TK)

U− = ker(
1

2
I + TK)

W+ = ker(−1

2
I + T ∗K)

W− = ker(
1

2
I + T ∗K)

W 0
+ =

{
β ∈ W+ :

∫
S

β = 0

}
We define functions α1, · · · , αm and α′1, · · · , α′m′ on S by

αj =

{
1 if x ∈ ∂Ωj,

0 otherwise.

α′j =

{
1 if x ∈ ∂Ω′j,

0 otherwise.

We first prove a key lemma which contains almost information of above subspaces.

Lemma 6.1. The spaces U+ and W+ have dimension m, the spaces W− and W− have
dimension m′. Moreover:
(a).If n > 2, for each (a1, · · · , am) ∈ Cm there is a unique β ∈ W+ such that the
single layer potential ω with moment β satisfies ω|Ωj = aj for j = 1, · · · ,m.
(b).If n = 2, there is an (m− 1)-dimension subspace X of Cm such that:

i. Cm = X ⊕ C(1, · · · , 1).
ii.for each (a1, · · · , am) ∈ X, there is a unique β ∈ W 0

+ such that the single layer
potential ω with moment β satisfies ω|Ωj = aj for j = 1, · · · ,m.

(c).For each (a1, · · · , am′) ∈ Cm′
there is a unique β ∈ W− such that the single layer

potential ω with moment β satisfies ω|Ω′j = aj for j = 1, · · · ,m′ and ω|Ω′0 = 0.

(d).L2(S) = U⊥+ ⊕W+ = U⊥− ⊕W−.
(e).L2(S) = U+ ⊕ range(−1

2
I + TK) = U− ⊕ range(1

2
I + TK).

Proof. a, b and c:By a simple computation, we can see αj ∈ U+ and α′j ∈ U−. Clearly
α1, · · · , αm, α′1, · · · , α′m′ are linear independent, respectively. So dimU+ = dimW+ ≥
m and dimU− = dimW− ≥ m′. On the other hand, suppose β ∈ W+, let ω be the
single layer potential with moment β. Hence ∂γ−ω = 0 and ω is constant in each Ωj,
so we can define a linear map from W+ to Cn:

β −→ (ω|Ω1, · · · , ω|Ωm)

If n > 2, it’s clear that the map is injective by uniqueness of exterior Dirichlet problem
which yields (a) holds.
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If n = 2, the restriciton of the map to W 0
+ is injective and its range does not contain

the vector (1, · · · , 1), then the (b) holds.
For W−, the map should be from W− to Cn:

β −→ (ω|Ω′1, · · · , ω|Ω′m′)

notice ω = 0 in Ω′0(by ∂γ+ω=0) and is constant in each Ω′j (even n = 2 by a2,b1 in
lemma5.1). Hence if ω = 0 in each Ω′j, then ω = 0 in Ω by uniqueness of interior
Dirichlet problem which yields that above map is injective i.e (c) holds.
d:It only need to check U⊥+ ∩W+ = 0. ∀φ ∈ U⊥+ ∩W+, then T ∗Kφ = 1

2
φ and φ =

−1
2
ψ + T ∗Kψ, u and v are the single layer potential of φ and ψ respectively. Then we

have

∂γ−u = 0; ∂γ−v = φ =
1

2
φ+ T ∗Kφ = ∂γ+u

Hence

0 =

∫
S

u∂γ−v − v∂γ−u =

∫
S

u∂γ+u = −
∫

Ω′
|∇u|2

then u is locally constant in Ω′ and φ = 0.
(Green’s formula holds at last equality above by:

∫
S
φ = 0 which yields u is harmonic

at infinity for n = 2)
Then we check U⊥− ∩W− = 0. ∀φ ∈ U⊥− ∩W−, then T ∗Kφ = −1

2
φ and φ = 1

2
ψ + T ∗Kφ,

u and v are the single layer potential of φ and ψ respectively. Then we have

∂γ+u = 0; ∂γ+v = φ =
1

2
φ− T ∗Kφ = −∂γ−u

Hence

0 =

∫
S

u∂γ+v − v∂γ+u =

∫
S

−u∂γ−u = −
∫

Ω

|∇u|2

then u is locally constant in Ω and φ = 0.
(Green’s formula holds at the first equality above by:

∫
S
φ =

∫
S
ψ = 0 which yields u

and v is harmonic at infinity for n = 2)
e:Just prove L2(S) = U+ ⊕W⊥

+ = U− ⊕W⊥
− .

By:
∀φ ∈ U+ ∩W⊥

+ , (φ, φ) = 0 by φ = φ1 + φ2, φ1 ∈ U⊥+ , φ2 ∈ W+. Hence φ = 0.
∀φ ∈ U− ∩W⊥

− , (φ, φ) = 0 by φ = φ1 + φ2, φ1 ∈ U⊥− , φ2 ∈ W−. Hence φ = 0.
Then the direct sum by linear algebra.

�

Theorem 6.2. With the notation and terminology of section2, we have
(I)The interior Dirichlet problem has a unique solution for every f ∈ C(S).
(II)The exterior Dirichlet problem has a unique solution for every f ∈ C(S).
(III)The interior Neumann problem has a solution for f ∈ C(S) iff

∫
∂Ωj

f = 0 for

j = 1, · · · ,m. The solution is unique modulo functions which are constants on each
Ωj.
(IV)The exterior Dirichlet problem has a solution for f ∈ C(S) iff

∫
∂Ω′

j
f = 0 for

j = 1, · · · ,m′ and also for j = 0 in case n = 2. The solution is unique modulo
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functions which are constants on each Ω′j for j = 1, · · · ,m′ and also on Ω′0 in case
n = 2.

Proof. a:By (e) of lemma6.1, ∀f ∈ C(S), f = 1
2
φ + TKφ +

∑m′

j=1 cjα
′
j, hence φ is

continuous by lemma3.1(VII).
by lemma6.1(c), ∃β ∈ W−, ω is the single layer potential with moment β, then

ω|S =
m′∑
j=1

cjα
′
j

u = v+ω is the solution of interior Dirichlet problem with boundary function f , here
v is the double layer potential with moment φ.
b.n > 2, as same as (a)(remove all ’ and change 1

2
into −1

2
).

n = 2,

f = −1

2
φ+ TKφ+

m′∑
j=1

cjαj = −1

2
φ+ TKφ+

m′∑
j=1

djαj + c1S

here vector (d1, · · · , dm) ∈ X.
Then v is the double layer potential with moment φ, ω is the single potential(with

moment β ∈ W−) solves
∑m′

j=1 djαj by lemma6.1(b). Finally, the solution of exterior
Dirichlet problem is v + ω + c.
c:just consider the sufficient condition.∫

Ωj

f = 0 ∀j ⇔ f ∈ U⊥+ = range(−1

2
I + T ∗K)⇒ −1

2
φ+ T ∗Kφ = f

for some φ ∈ C(S).
d:just consider the sufficient condition.∫

Ωj

f = 0 ∀j ⇔ f ∈ U⊥− = range(
1

2
I + T ∗K)⇒ 1

2
φ+ T ∗Kφ = f

for some φ ∈ C(S).
n = 2, the single potential is harmonic at infinity implies

∫
∂Ω′

0
f = 0.

�

7. Appendix

In the appendix, we summarize some some common facts about removable singular-
ity and asymptotic behavior at infinity of harmonic function and its radical derivative
which have used before. For self-contained exposition, we give their proofs here.

Proposition 7.1. If u is harmonic on the complement of a bounded set in Rn, the
following are equivalent:
(I)u is harmonic at infinity.
(II)u(x)→ 0 as x→∞ if n > 2, or |u(x)| = o(log(|x|)) as x→∞ if n = 2.
(III)|u(x)| = O(|x|2−n) as x→∞.
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Proof. we follow (I)⇒(III)⇒(II)⇒(I).
(I)⇒(III):notice that

∆u = 0 in Ω⇐⇒ ∆ũ = 0 in Ω̃

here Ω̃ is some neiborhood of origin, hence (III) holds.
(III)⇒(II):trivial.
(II)⇒(I):by (II) we have

|ũ(x)| =

{
o(|x|2−n) ifn > 2,

o(log(|x|)) ifn = 2.

in some neiborhood of origin, which yields (I).
�

Proposition 7.2. If u is harmonic at infinity, then |∂ru(x)| = O(|x|1−n) as x→∞;
in case n = 2, |∂ru(x)| = O(|x|−2) as x→∞.

Proof. By scaling transformation, we may assume that u is harmonic outside B 1
2
(0).

Then ũ is harmonic in B2(0), we can expand it in spherical harmonic function in B1:

ũ(x) =
∞∑
k=0

|x|kYk(
x

|x|
) (Yk ∈ Hk)

here Hk is the set of all spherical harmonic functions. By the relation of ũ and u, we
have

u(x) =
∞∑
k=0

|x|2−n−kYk(
x

|x|
) (Yk ∈ Hk)

i.e

u(x) =
∞∑
k=0

r2−n−kYk(y) (Yk ∈ Hk)

here x = ry,r = |x|. Hence

∂ru(x) = r1−n
∞∑
k=0

(2− n− k)r−kYk(y) (Yk ∈ Hk)

then for r ≥ 3

|∂ru(x)| ≤ Cr1−n
∞∑
k=0

r−k|Yk(y)| (Yk ∈ Hk)

notice that RHS converges uniformly, hence is bounded which yields our desired. For
n = 2, the first item in sum vanishes, then we complete the proof. �

School of Mathematical Sciences, University of Science and Technology of China,
Hefei 230026, P. R. China

Email address: lzh139@mail.ustc.edu.cn


